Grimoire
Technical Design Document
©2006 Team Pants and The Guildhall at SMU

October 18, 2006

Table of Contents

81.
Project Description

1.1
Overview
8
1.2
Scope
8
1.3
Deliverables
8
2.
Technical Components
8
2.1
Player
8
Description
8
Requirements
8
Options
9
Design
9
2.2
Camera
9
Description
9
Requirements
9
Options
9
Designer-Placed Camera Entities
9
Programmatic Camera
9
Design
10
Programmatic Camera
10
2.3
Spell Manager
10
Description
10
Requirements
10
Options
10
No Manager
10
Spell Manager
11
Design
11
Spell Manager
11
2.4
Particle System
12
Description
12
Requirements
12
Options
12
Specialized Emitters
12
Componentized Emitter
13
Design
13
Componentized Emitter
13
2.5
Configuration System
14
Description
14
Requirements
14
Options
14
HL2 User Variables
14
HL2 Configuration File
14
Custom Configuration File
15
Design
15
Custom Configuration File
15
2.6
Material System and Shaders
17
Description
17
Requirements
17
Options
17
Base our shaders on the copies of the production shaders that come with the SDK.
17
Write our shaders from scratch.
17
Case by Case basis depending on the shader effect desired.
17
Design
17
Case by Case basis depending on the shader effect desired.
17
2.7
Asset Pipeline
18
Description
18
Requirements
18
Options
18
Use Valve’s command line tools
18
Use Cannonfodder’s GUI wrapper’s for the tools
19
Use various tools as needed.
19
Design
19
Use various tools as needed.
19
2.8
Graphical User Interface (GUI)
21
Description
21
Requirements
21
Options
21
Use the HL2 VGUI System
21
Design
22
Use the VGUI System
22
2.9
Heads-up Display (HUD)
23
Description
23
Requirements
23
Options
23
Use the VGUI System
23
Design
23
Use the VGUI System
23
2.10
Joystick Controls
24
Description
24
Requirements
24
Options
25
DirectPlay Joystick Input
25
Modification of the HL2 Joystick Support
25
Design
25
Modification of the HL2 Joystick Support
25
2.11
Fireball Spell (Quick/Charge)
25
Description
25
Requirements
26
Options
26
Custom Projectile
26
Inherit from a Half-Life 2 projectile class
26
Design
26
Custom Projectile
26
2.12
Ice Knives (Quick Cast)
26
Description
26
Requirements
26
Options
26
Projectile Weapon
26
Trace Weapon
27
Design
27
Projectile Weapon
27
2.13
Ice Knives (Charge Cast)
27
Description
27
Requirements
27
Options
27
Projectiles
27
Immediate Area Effect
27
Design
28
Immediate Area Effect
28
2.14
Shield (Quick Cast)
28
Description
28
Requirements
28
Options
28
Shield-Based Collision
28
Character-Based Collision
28
Design
28
Character-Based Collision
28
2.15
Shield (Charge Cast)
29
Description
29
Requirements
29
Options
29
Shield-Based Collision
29
Character-Based Collision
29
Design
29
Shield-Based Collision
29
2.16
Maelstrom (Quick Cast)
30
Description
30
Requirements
30
Options
30
Trace Weapon
30
Projectile Weapon
30
Havok Physics
30
Tagging
30
Design
30
Projectile Weapon and Tagging
30
2.17
Maelstrom (Charge Cast)
31
Description
31
Requirements
31
Options
31
Bounding Volume
31
Havok Physics
31
Tagging
31
Design
31
Bounding Volume and Tagging
31
2.18
Runetrap (Quick Cast)
32
Description
32
Requirements
32
Options
32
Spell Managed Rune Objects
32
Design
32
Spell Managed Rune Objects
32
2.19
Runetrap (Charge Cast)
32
Description
32
Requirements
32
Options
33
Spell Managed Rune Objects
33
Design
33
Spell Managed Rune Objects
33
2.20
Teleport (Quick Cast)
33
Description
33
Requirements
33
Options
33
Modify the Character
33
Design
33
Modify the Character
33
2.21
Teleport (Charge Cast)
33
Description
33
Requirements
34
Options
34
Directly Exchange Player Locations
34
Design
34
Directly Exchange Player Locations
34
2.22
Wisps (Quick/Charge)
34
Description
34
Requirements
34
Options
34
Boid-Wisp Projectiles
34
Per-Cast Wisp Manager
35
Design
35
Per-Cast Wisp Manager
35
2.23
Lightning (Quick/Charge)
36
Description
36
Requirements
36
Options
36
Model the lighting as a very fast projectile entity
36
Just use a ray trace and deal damage over time
36
Design
36
Model the lighting as a very fast projectile entity
36
2.24
Shatterfoot (Quick/Charge)
37
Description
37
Requirements
37
Options
37
Use a cylindrical entity for collision
37
Design
37
Use a cylindrical entity for collision
37
3.
Risks
38
3.1
Overscoped GUI
38
Description
38
Impact
38
Probability
38
Visibility
38
3.2
Underdefined Visual Effects
38
Description
38
Impact
38
Probability
38
Visibility
39
3.3
Scope of Spells System
39
Description
39
Impact
39
Probability
39
Visibility
39
3.4
Research-Based Tasks
39
Description
39
Impact
39
Probability
40
Visibility
40
3.5
The Iterative Process (and the Potential for Rework)
40
Description
40
Impact
40
Probability
40
Visibility
40
3.6
Balance Between Team Game and Directed Focus Study
40
Description
40
Impact
41
Probability
41
Visibility
41
3.7
Noisy Work Environment
41
Description
41
Impact
41
Probability
41
Visibility
41
4.
Source Control
41
5.
Quality Assurance Plan
42
6. Milestone Schedule
42
October 25, 2006
42
November 8, 2006
43
November 22, 2006
43
December 6, 2006 (First Playable)
43

1.
Project Description
1.1
Overview

Grimoire is a third-person, two-player ranged fighting game developed as a Half-Life 2: Deathmatch mod. The Team Pants software developers will be responsible for implementing new gameplay systems and visual effects as well as assisting in the asset development pipeline.

1.2
Scope

As described in the game design document, Grimoire will feature two dueling wizards conjuring fireballs and other magical spells in a ranged variant on a traditional versus fighting game. The programmers will implement a floating third-person camera, analog gamepad controls, eighteen spells (each with unique gameplay and visual effects) and various other gameplay entities, a particle manager and shaders to support the spell effects, a completely new HUD and “console-style” GUI, and a small number of internal development tools.

The Team Pants philosophy is to apply Occam’s razor and avoid unnecessary complexity while producing a quality product. We have developed a technical design which adheres to this principle. Because the core gameplay hook is in the choice and variety of magic spells a player may cast, we have established a simple yet robust architecture for handling the range of spells. Another fundamental design requirement is the console-style interface and gameplay, so we have allotted a substantial amount of resources to overhaul Half-Life 2’s more complex front-end UI.
1.3
Deliverables

The Team Pants software development team will ultimately be responsible for delivering the HL2 mod libraries (client.dll and server.dll) and the game’s executable installer.

2.
Technical Components

2.1
Player

Description

This class handles the player’s input and the character’s data.
Requirements
· Interfaces with the spell system

· Maintains health and mana values

· Maintains list of available spells

· Maintains player state and handles state effects
Options
Subclass HL2 Player

· Advantages:

· Simple implementation.

· Extendable easily.

· Disadvantages:

Design
Subclass HL2 Player

We will subclass the existing Half-Life 2 player class to add our own interface for spell controls and all Grimoire-specific members. The spell system is described in further detail below. The player class is responsible for maintaining player state (staggering, knocked down, casting, etc.) and applying the effects of each (e.g., inability to cast). This will be handled polymorphically using a player state strategy object.
2.2
Camera
Description

The primary camera in Grimoire is a third-person camera. The camera system will allow multiple strategies so as to support introduction and victory shots.
Requirements

· Third-person, slightly overhead angle, always facing “forward” into the scene
· Keeps both players in view at all times

· Does not clip through walls or otherwise show regions outside the level

· Is flexible enough to implement new or different behaviors easily
Options

Designer-Placed Camera Entities
· Advantages:

· Allows each level designer to define the camera uniquely in his map

· Places the responsibility for tweaking the behavior on the designers

· Disadvantages:
· Requires creating a large generic system with a small payoff
· More work for level designers to establish special shots

Programmatic Camera

· Advantages:
· Simpler to implement

· Special behaviors don’t have to be defined per-map

· Disadvantages:
· Harder to keep camera out of problem areas in maps

· Iteratively tweaking the camera is a programmer concern
· Designers have less control.

Design
Programmatic Camera

We will actually follow the middle ground between the options. Fundamentally, Grimoire will use a programmatic camera, but we will allow level designers to constrain the camera’s position with blocking entities. Furthermore, if the designers find themselves needing different properties in their maps, we can allow the camera’s variables to be defined per-map, either in a custom configuration file or a Hammer entity. This decision is based on the fact that the game’s scope does not require drastically varying camera behaviors, so a completely generic designer-controlled camera is unnecessary.

The camera will be a client-based entity which maintains its location and facing direction. Although the camera is designed to be synonymous on each player’s machine it does not require server-side placement because its behavior is mathematically defined as a function of the world state, so each player will have an identical view as long as the entities on which it is dependent are properly replicated.

The camera will use the Strategy design pattern to switch between various behaviors (introduction fly-by, normal game view, victory shot, etc.). The camera class will not contain any behavioral code itself. Instead, it only contains its location and direction and delegates the responsibility of modifying those properties to its current strategy. Each strategy will maintain any additional required state information (e.g., velocity).
2.3
Spell Manager

Description

The central focus of Grimoire is the spells. Developing a system to manage the spells in a way that allows for rapid implementation and is scalable along with the spells is essential.
Requirements

· Allow for spells to be developed rapidly.

· Scale effortlessly as new spells are added.

· Flexible to changes in the spells.
Options
No Manager

· Advantages:

· Inherently flexible.
· Allows spells to be entirely custom created.
· Disadvantages:
· No central point for launching a client spell request. Requires each spell build its own launch schema.
· Difficult to rapidly extend for new spells.
Spell Manager

· Advantages:

· Provides a central ‘launch’ point for client spell requests.
· Provides a standard interface for registering spells.
· Can be built in a flexible and extendable manner.
· Disadvantages:
· Requires planning to ensure flexibility – poor design could result in arbitrary barriers.
Design

Spell Manager

The SpellManager is a central launch point for one client’s spell commands. One SpellManager will reside on the server for each player. Spell objects will register themselves with the SpellManager.

Spell objects are instances of classes which are inherited from the Spell abstract base class. Their functionality includes:

· Accept requests to launch spells for a certain player.

· Process those requests creating SpellProjectile and SpellEffect objects as required.

Each spell type will be a different child of the Spell abstract base class. Examples include: FireBallQSpell, FireBallCSpell, and TeleportQSpell. In order to ensure correct order-of-creation the SpellManager will have a hard-coded list of Spell classes to instantiate and register on its creation.

The SpellManager will also be the mechanism to track which spells each player can equip and currently has equipped. In this way cheating can be avoided: clients simply send a ‘Spell1’, ‘Spell2’, or ‘Spell3’ message which is translated into a spell ID number.

When registering a Spell object tells the SpellManager to associate it with a given spell ID number. When a SpellManager receives a launch request for this ID number it can quickly access the Spell object through a look up table and ask it to launch the spell. Spell objects are created when the SpellManager is created; there is one instance of each Spell object per player.

The Spell objects will process the spell launch request and create the necessary entities to handle the behavior of the spell. In example if FireBallQSpell is cast the FireBallQSpell object for the casting player will create a FireBallQSpellProjectile entity on the server. This will represent the effect of the fireball.

This system also allows for various spells to share common attributes through inheritance. For example the GDD calls for two categories of spell projectiles: Quick and Charge cast. Quick cast projectiles colliding with a Quick Cast projectile will both fizzle while Quick cast projectiles colliding with a Charge Cast projectile will result in the Charge Cast defeating the quick cast and continuing. This is one example of a common behavior that will be easy to model with an object oriented inheritance system.

The basic flow of a FireBallQ spell casting is:

1. A client presses a button for FireBallQ spell.

2. The button is sent to the server for translation into the FireBallQ spell ID by the SpellManager.

3. The SpellManager uses the spell ID to find the Spell object associated with the FireBallQ spell ID.

4. The FireBallQSpell object is told a launch to spell for the client.

5. The FireBallQSpell creates a FireBallQSpellProjectile to represent the spell.

6. The FireBallQSpellProjectile is self contained and carries out the functionality of the spell.

2.4
Particle System

Description

Grimoire is a spell based game which will rely heavily on particle effects for its visual impact. HL2 provides a framework for creating particle effects using their built in emitters (such as CSimpleEmitter) or by inheriting from the emitter baseclass CParticleEffect.
Requirements

· Rapid creation of a large number of effects (considering only the spells at least 18 unique effects will be required).

· A stipulation of this is a way to quickly prototype new effects with minimal programmer overhead.

· Emitters which can easily be attached to bones and objects.

· Expose effect parameters for easy tweaking by artists and designers through the Configuration System.

· Maximum control over emitters so that artists and designers do not feel limited.
Options

Specialized Emitters

This plan calls for a specialized emitter being created for each effect.
· Advantages:

· Emitters have the highest amount of control and customization.
· Disadvantages:
· Discourages reusability and rapid creation.
· Requires creation of a large number of emitters which may share characteristics, but do not share code.
· High programmer overhead.
Componentized Emitter

This plan calls for a generic ‘Emitter’ which allows behavioral components to be attached to control particle behavior.
· Advantages:

· Flexible and extendable with custom behavioral components.
· Encourages code reuse.
· Allows for rapid creation of new effects once a base collection of behavior components are created.
· Allows complete customization without requiring reimplementation.
· Disadvantages:
· May result in an explosion of behavior components with overlapping characteristics if not handled delicately.
· Highest CPU overhead.
· Requires a generic Particle type.
Design

Componentized Emitter

The decision to go with Componentized Emitters is an easy one. The disadvantage poor CPU efficiency is offset by the fact that HL2’s handling of particles is inherently inefficient. The best way to handle particles if efficiency is the priority is to process large numbers in batches; however HL2 processes each particle singularly. The added overhead for attachable components is low in comparison. Additionally the benefits to code reuse, flexibility, customizability, and rapid creation far outshine the efficiency downfall.

The system uses a generic ParticleEmitter class which can be instantiated for different spells and effects instances. A ParticleEmitter can have different ParticleUpdater objects registered with it that cause different effects to take place. Examples would be an updater to apply gravity, to apply a wind, or to move the particle along a spline.

ParticleUpdater objects are registered with a ParticleEmitter in a specific user-defined order. Two effects which are built into the ParticleEffect are to integrate the velocity and to check for particle death. These are basic effects which will always be desired.

Children of the generic ParticleEmitter class can be created which will automatically register various combinations of ParticleUpdater objects to themselves. This provides a clean and rapid way to create new ParticleEmitter classes which can be instantiated as simply as calling a ‘CreateEmitter(name)’ type function.

The generic ParticleEmitter class can be given a specific location to emit particles from, be attached to a bone, or be attached to an entity. In all cases it can be asked to pause, have its list of registered ParticleUpdater objects changed, or be destroyed at any time. This will allow the spell entities a method of easy high-level control. Additionally the rate of particle emission can be controlled externally.

In order to allow designers and artists to fiddle with the parameters the derived ParticleEmitter classes will be tied into the Configuration System. It will be required that each derived ParticleEmitter class implement its own list of tweakable parameters, however it will be possible to have ParticleUpdater objects provide parameter lists that can be used to rapidly implement the tweakable parameters.
2.5
Configuration System

Description

In order to allow designers to rapidly and easily adjust ‘tweak-able’ properties (such as damage or mana cost of a spell) a data-driven configuration system is required.
Requirements

· Easy to use for designers

· Easy to extend (programmers adding new tweak-able properties)

· Optional Persistence (Save changes if good or discard if not good)

· Flexible format (adding or removing properties handled automatically and elegantly)

Options

HL2 User Variables

This strategy calls for using the built in functionality of HL2 user variables which may be set through the HL2 console.
· Advantages:

· Exists already as part of the HL2 engine.
· Easy to implement for programmers.
· Disadvantages:

· Does not provide a built in persistence, would need to be added.
· Requires designers to memorize or refer to a list of variable names.
· Requires executing commands to view prior state of variables.
HL2 Configuration File

This strategy calls for using the built in HL2 configuration file parser.
· Advantages:

· Built in parser apparently exists as all HL2 data files use the same “key” “value” system.
· Easy for designers to use.
· Built in persistence.
· Disadvantages:

· Requires management to allow discarding (either coded, or through version control).
· Unknown how to use the HL2 configuration file parsing, requires research.
Custom Configuration File

This strategy calls for creating a custom configuration file parser system.
· Advantages:

· Able to use 3rd party parser programmers already familiar with (such as TinyXML or win32 INI files).
· Easy for designers to use.
· Built in persistence.
· Disadvantages:

· Requires full implementation.
· Requires management to allow discarding (either coded, or through version control).
Design

Custom Configuration File

The Custom Configuration file offers the most likely choice. User variables are not appropriate due to relative difficulty for designers to use as compared to running HL2 in a window with a window displaying the text file for them to easily edit. The HL2 parser would be good, but as it is not documented the time investment to make use of it is too high.

Using a Custom Configuration file offers us the ability to use a 3rd party parser we have experience with. Additionally it should be easy for designers to use through the ‘windowed mode’ design described above.

In order to make it easy for programmers to use and extend a ConfigManager class will be created. This will follow a singleton pattern and provide the following functionality:

· Allow classes to register themselves with the configuration manager.

· Classes requiring registration will derive from abstract base class ConfigConsumer.

· ConfigConsumer provides the following functionality:

· Return the class name for registration purposes.

· Return a list of ConfigProperty objects it expects which define:

· String Key

· Value type

· Value

· A callback that alerts the ConfigConsumer when the config file has been loaded. This is automatically called on registration if the config file has already been loaded.

· A registered class can request to have its ConfigConsumer objects updated at any time. This will automatically happen in response to the ‘config loaded’ callback.

· Allow ConfigManager to load/parse an Grimoire Configuration File

· This should occur on server creation.

· This should occur on server operator request (through a console command).

· This will alert all registered ConfigConsumer objects that the load has happened.

In this setup there is still a need for non-permanent persistence. While this could be implemented by having the initial load create a complete backup of the configuration and resaves it on request that is a needlessly complex system that disallows a generic load routine. Instead our version control can serve to allow designers to ‘roll back’ changes by using ‘revert’ on the configuration file. This requires no additional implementation and uses systems they are already familiar with.

Adding new ConfigProperty objects to a ConfigConsumer should be a simple task so one possibility is to allow a ‘default value’ to be provided. If the ConfigManager encounters a ConfigConsumer with ConfigProperty it does not have it could insert this ‘default value’ into the file. While this allows a programmer to add new ConfigProperty objects and even register new ConfigConsumer objects without ever touching the config file it has the strong downside of embedding a ‘default’ value which will quickly become outdated and must be manually updated.

For this reason the system will require programmers update config files with new ConfigConsumer/ConfigProperty objects. If a system encounters one it does not recognize it can safely overlook it and just print a warning to the console. If a system encounters a ConfigConsumer or ConfigProperty requesting update (following a load callback) that it does not recognize this will raise an error condition.

This will allow the order of creation to be irrelevant and for reloaded changes to be reflected automatically. It allows for variables to be removed without touching config files while requiring config files are updated when a variable is added, which is intuitive. Following the ‘first request creation’ singleton pattern will assure that the ConfigManager exists whenever it is requested; avoiding that order-of-creation problem.

2.6
Material System and Shaders

Description

Custom shaders needed for special effects in Grimoire.
Requirements

TBD
Options

Base our shaders on the copies of the production shaders that come with the SDK.

· Advantages:
· We get a bunch of functionality “for free.”

· Disadvantages:
· Need to read through the shader code and to gain an understanding of exactly what it does before modifying it.

Write our shaders from scratch.

· Advantages:
· Know the code for the shader completely.

· Disadvantages:
· Doesn’t do anything we don’t make it do.

Case by Case basis depending on the shader effect desired.

· Advantages:

· Gives us flexibility to write a new shader when needed.

· Not limited from modifying HL2 shaders.

· Gain functionality “for free”.

· Disadvantages:

· Need to examine shader code to determine if it should be modified in most cases.
Design

Case by Case basis depending on the shader effect desired.

In the Source engine, the material system is consists of three components – a C++ class which defines the shader, HLSL or assembly files in which the logic of the shader is written, and VMT files which define a material that can be used by the game. Each VMT specifies the C++ shader class to call, and optionally set parameters which may be passed to that class. The C++ class is responsible for binding the compiled the vertex and pixel shaders defined either by the HLSL or shader assembly files. It is also responsible for binding textures, render targets, and anything else required by the shader. Shader parameters set in a VMT may be used to configure the shader through this class.

A shader project has already been added to the repository. You may add a shader by using the following instructions.

How to add a shader:

1) Download and Install Active Perl

2) Make sure the DXSDK is installed

3) The Perl scripts that build the shaders have problems with whitespace in file names. You can fix this by re-installing steam to your c:\ drive or you can fix all the Perl scripts manually.

4) Make sure both perl and fxc are in your path environment variable.

5) Create the necessary .fxc, and .cpp files in \src\materialsystem\stdshaders
6) Add the your .fxc files to stdshader_dx9.txt

7) Open a command window. Run SetEnvVars.bat. Then run MyBuildShaders.bat. We added these two bat files to make it easier to build shaders.

8) Wait for a while. Later compiles will take far less time (depending on what you change)

9) Open stdshader_dx9.vcproj
10) Add your .cpp file to the project

11) Remove d3d9.lib and d3dx9.lib from the project. Add them again from wherever you have the sdk installed.

12) Build the project. This should put game_shader_dx9.dll in your bin directory.

13) Create any vmt’s needed in the materials directory.

14) Run the mod.
2.7
Asset Pipeline

Description

How models in textures get from 3DS MAX and Photoshop files, to files that can be used in Grimoire.
Requirements

· Must be able to import character and prop models created using 3DS max into the mod.

· Must be able to import textures referenced
Options

Use Valve’s command line tools
· Advantages:
· Comfortable for programmers to use.

· May be automated.

· Disadvantages:
· Difficult for Artists and Designers.

· Programmers may have to write a bunch of batch scripts to make things easier.

Use Cannonfodder’s GUI wrapper’s for the tools
· Advantages:
· Easier for Artists and Designers.

· Disadvantages:
· Less flexible.

· GUI tools are buggy.

· Unable to automate.
Use various tools as needed.

· Advantages:

· Artists and Designers can use GUI tools.

· Programmers can use command line tools.

· Automation can be used on command line tools.

· Disadvantages:

Design

Use various tools as needed.

Models in Source were meant to be created Using XSI; however, because the Guildhall provides our artists with 3DS MAX, and that is what they are most comfortable using, we are Cannonfodder’s exporter (http://www.chaosincarnate.net/cannonfodder/cftools.htm) for MAX. Once a model has been exported, it needs to be converted from an XSI .smd file to a .mdl file that the engine can use. The source SDK comes with a command line tool called studiomdl to do this. It also requires a configuration script (.qc) that describes any optional parameters (collision model, surface properties, scale, etc.) for the model.

Cannonfodder also has a GUI tool called StudioCompiler that can automatically create a .qc file, and this is sufficient for exporting most models, but because character models are more complicated and because they depend on a fairly complex hierarchy of qc scripts, they will usually require a programmer to write and maintain a specialized script for each model that needs to be imported. Textures should be saved as .tga files and then converted to Valve’s .vtf format using either command line vtex tool, or by using StudioCompiler. To be used in game, a texture must be referenced by a .vmt file (see Material System and Shaders). In most cases, StudioCompiler can be used to export a .vmt file along with the .vtf for the texture.

When an artist creates a model in max he may assign it a texture. The exported and compiled model references a .vmt with the same name as that texture. Thus, it is important to remember to create a .vmt for any textures used in the model.

When compiling character models several .smd files are necessary – a reference .smd that contains the model’s mesh and vertex weighting and a smd file for each animation that can be played on the model. Cannonfodder’s exporter can produce both of these. The animation .smd files may be shared amongst several models as long as they use the same skeleton. Alternatively, the character may be reference existing half life animations, in which case the skeleton from the SDK should be used as opposed to a custom skeleton. The .qc file for such a model would look something like the following:

$modelname Humans\Male\model_name.mdl

$cdmaterials models\Humans\Male

$model male_05 "refernce_mesh.smd"{

$include "../../bodyrules_xsi.qci"

}

$surfaceprop "flesh"

$bbox -13 -13 0 13 13 72

$mostlyopaque

$include "../../standardhierarchy.qci"

$include "../../standardikchains.qci"

$alwayscollapse "Male_01"

$alwayscollapse "XSISceneRoot"

$proceduralbones "../../male.vrd"

$include "../commonbones.qci"

$includemodel humans/male_shared.mdl

$includemodel humans/male_ss.mdl

$includemodel humans/male_gestures.mdl

$includemodel humans/male_postures.mdl

$pushd "../"

$include "../hitbox.qci"

$include "../ragdoll.qci"

$popd

The $includemodel commands link the mesh .mdl files that contain only animations for the character.

The .qc file for a model with a custom skeleton and animations would look something like the following:

$modelname Humans\Female\model_name.mdl

$cdmaterials Models\Humans\Female

$model prot_character "refernce_mesh.smd" {

$include "../../bodyrules_xsi.qci"

}

$surfaceprop "flesh"

$bbox -13 -13 0 13 13 72

$mostlyopaque

$include "../../standardhierarchy.qci"

$include "../../Grimoireikchains.qci"

$alwayscollapse "Female_01"

$alwayscollapse "XSISceneRoot"

$proceduralbones "../../female.vrd"

$include "../commonbones.qci"

$sequence idle "protoidle.smd" loop ACT_HL2MP_IDLE 1 fps 30.00

$sequence idle_grenade "protoidle.smd" loop ACT_HL2MP_IDLE_GRENADE 1 fps 30.00

$sequence run_melee "proto_character_run.smd" loop ACT_HL2MP_RUN_MELEE 1 fps 30.00

$sequence run_pistol "proto_character_run.smd" loop ACT_HL2MP_RUN_PISTOL 1 fps 30.00

$sequence run_grenade "proto_character_run.smd" loop ACT_HL2MP_RUN_GRENADE 1 fps 30.00

$sequence jump_melee "proto_character_jump.smd" ACT_HL2MP_JUMP_MELEE 1 fps 30.00

$sequence jump_grenade "proto_character_jump.smd" ACT_HL2MP_JUMP_GRENADE 1 fps 30.00

$sequence range_grenade "prot_character_fireball.smd" ACT_HL2MP_GESTURE_RANGE_ATTACK_GRENADE 1 fps 30.00

$sequence range_melee "prot_character_fireball.smd" ACT_HL2MP_GESTURE_RANGE_ATTACK_MELEE 1 fps 30.00

$sequence range_crossbow "prot_character_fireball.smd" ACT_HL2MP_GESTURE_RANGE_ATTACK_CROSSBOW 1 fps 30.00

$pushd "../"

$include "../hitbox.qci"

$include "../ragdoll.qci"

$popd

Each animation sequence is defined by the $sequence command, and can be called from the mod’s gameplay code. Note that a slightly different ikchains.qci include is needed to use the MAX biped. Specifically, the model’s knee’s need to be reversed as compared to Valve’s biped.

$ikchain rfoot "valvebiped.Bip01_R_Foot" Z 0 knee 0.707 0.707 0 pad 5 center 4 0 0

$ikchain lfoot "valvebiped.Bip01_L_Foot" Z 0 knee 0.707 0.707 0 pad 5 center 4 0 0
Also, a collision mesh, and a 100 frame animation of the model in a T-pose is needed to properly handle ragdolls of the model. Thus a new version of ragdoll.qci should be created that all future model’s with the custom skeleton can reference.

2.8
Graphical User Interface (GUI)

Description

The GUI system encompasses all gameplay and configuration menus accessible from within the game. Thorough this system the player will be able to find and connect to multiplayer games, select spells and character models, and manually configure many of the game’s settings.
Requirements

· ‘Look and feel’ of the in-game menus will be tailored to fit the game’s setting.

· Custom fonts, button images, panel backgrounds and sounds will be utilized to completely alter the GUI appearance.

· The GUI can be navigated with either the mouse or with the joystick.
Options

Use the HL2 VGUI System

· Advantages:
· Already built into the HL2 engine
· Robust controls
· Fully customizable
· Easy to use inheritance for extended/shared functionality
· Can quickly iterate through design changes with in-game panel editor
· Disadvantages:
· May not provide all of the functionality needed – joystick driven menus for example.

· We may not be able to significantly modify the appearance of several ‘core’ menus that lack editable resource files.

Design

Use the VGUI System

The only real option is to use the menu system that is already in place. As our needs for this system mesh closely with the capabilities that are present in Half-Life 2, there should not be any issue in extending from the base menu class (m_pViewport). For any custom menus with new functionality, we can use the built-in GUI elements (buttons, text labels, etc) to easily create our own panels and connect them via HL2’s event messaging system.

To further speed up development and iterative design, the VGUI design mode can be activated with a few keystrokes and allows in-game manipulation of every panel’s variables. This will allow the GUI programmer to sit down with the Lead Artist or Game Designer and rapidly implement their vision.

The menus currently slated for development are:

· Game Loading Screen

· Modification is well documented and will follow the functionality of the current game loading screen.

· Main Menu

· Modification is well documented and should not pose any significant issues.

· Options (Multiplayer, Keyboard, Mouse, Audio, Video, Voice settings)

· Initialization is performed inside the private .dll and is not readily accessible. We should be able to either modify the base resource file that the menu derives from or programmatically modify the look of the menu when the game loads.

· Network Game Menu

· The same issues that apply to the Options menu apply here as well.

· Character Selection

· Custom menu – we will have complete control over the appearance and functionality.

· Spell Book Selection

· Custom menu – we will have complete control over the appearance and functionality.

· Arena Selection

· Custom menu – we will have complete control over the appearance and functionality.

· Arena Loading Screen

· Will duplicate the functionality of the current map loading screen.

2.9
Heads-up Display (HUD)

Description

The game will require several new HUD elements to convey the additional information present in the game and player states. These will all be graphical in nature to allow for players to rapidly process all of this data as quickly as possible.
Requirements

· Show the current health of both players

· Show the current mana level of both players

· Display the current “charged” level of the active spell

· Display icons for the 3 currently accessible spells

· Indicate the time left for the current battle round.

· Show the number of times each player has won a round
Options

Use the VGUI System

· Advantages:
· Already built into the HL2 engine

· Sending and receiving server messages is easily accomplished via callbacks

· Simple to customize and iteratively design with external resource files

· Disadvantages:
· None apparent.
Design

Use the VGUI System

As with the Graphical User Interface, the only feasible solution is to use the native HUD elements to display the game information on the screen. The HUD elements all derive from a base CHudElement class and share much of the functionality of the vgui::Panel.

In order to allow each client to view the health and spell power of both users, we will need to pass messages from the server to the client’s HUD elements. On each HUD element, we will need to:

· Use the DECLARE_HUD_MESSAGE macro to create a message type

· Register the callback for that message with the HOOK_HUD_MESSAGE macro.

· Register the messages on the server with CUSER_MESSAGE::Register()

· Ensure the client HUD element will never be destroyed by calling the HOOK_HUD_MESSAGE in the element’s init function.

From there, any messages from the server can be sent to the client in between calls to UserMessageBegin() and MessageEnd(). These messages can contain a wide variety of data (from a series of bits to entire strings) and should be more than sufficient to pass the needed data between clients.

All HUD elements will contain custom artwork and will require manual animation from within the control’s Paint() function. These animations will largely depend on the data sent from the server via pre-defined messages and should present a high-degree of polish without sacrificing accessibility and clarity.

HUD elements to be implemented:

· Player health and mana bar

· Receives health and mana change messages from the server

· HUD elements will animate only when a message is received

· Opponent health and mana bar

· Receives health and mana change messages from the server

· HUD elements will animate only when a message is received

· Wins and losses indicator

· Receives win / loss state from the server at the end of every battle.

· Constant state during the battle

· Match timer

· Receives time left from the server via messages

· Will need to receive messages on a per-frame basis for smooth interpolation of the remaining time gauge.

2.10
Joystick Controls

Description

All of the player’s controls will be designed with the assumption that the player will be primarily using the PS2 game pad for input. While accessing the joystick buttons and movement during actual gameplay is fairly straightforward, it is very problematic while in a menu state.
Requirements

· The controls should be as accessible and simple as possible.

· Players should not have to move between the keyboard/mouse and joystick once inside the game.

· Tapping a joystick button causes the player to fire the selected Quick Cast spell

· Holding a joystick button for a specified length of time and then releasing causes the player to fire the selected Charge Cast spell.

· Moving the analog joystick will move the player around the level (world-space relative, such that pushing directly right always moves the player along the x-axis in the positive direction)
· Holding the left shoulder button will allow access to a second set of spells
Options

DirectPlay Joystick Input

· Advantages:
· Much more accessibility to the joystick’s button state

· Disadvantages:
· Non-trivial integration into the HL2 code base.
· Additional dependencies

· Might be too complex a solution for the problem

Modification of the HL2 Joystick Support

· Advantages:
· Joystick movement is already integral to the engine

· Joystick buttons can be bound to custom in-game “keys” easily

· Disadvantages:
· Players can re-bind keys and completely break the game’s functionality
Design

Modification of the HL2 Joystick Support
Because HL2 handles all of the joystick input via wndprocs, there is no direct way to catch and handle joystick button press events. While playing in the game state, this is not necessarily an issue. We can bind the joystick buttons to custom keys defined in in_main and input.h and poll for those key presses during the player’s ItemPostFrame(). Several member variables within the CBasePlayer keep track of how long the player has held the button down and which button was depressed. From within that ItemPostFrame() function, we can change the player’s state (from charging to fully charged, to firing, etc) based on those variables and the current state of the joystick’s buttons.

Inside the menu state, however, presents an entirely different challenge. Because the implementation of the “core” menus is entirely hidden, there is no way to add additional support for polling the joystick’s state. Since we will be creating a new Main Menu panel, we should be able to poll the joystick control during its OnThink() or (as a last resort) embed a call to a joystick polling function inside the Paint() method. This will allow us to generate “mouse events” at regular intervals.

2.11
Fireball Spell (Quick/Charge)

Description

The Fireball spell is one of the simplest spells in the game. In both the charge and quick cast forms, it essentially creates a large ball of fire that is hurled towards an opponent.
Requirements

· Quick Cast: Creates a bowling-ball sized

· Charge Cast: Creates a large, rolling ball of flames

· In both spells, any objects caught in the path of the fireball will be set on fire.

Options

Custom Projectile
· Advantages:
· Easy to implement

· Allows programmers to maintain control of physics
· Still get the benefit of using HL2 entities

· Disadvantages:
· We may have to handle prediction ourselves
Inherit from a Half-Life 2 projectile class
· Advantages:
· Potentially less for us to write
· Disadvantages:
· Affords us less control to do custom effects
· May introduce effects we don’t want
Design

Custom Projectile

The decision made for how to implement the Fireball projectiles will dictate the direction of all future spell projectiles (hence the consideration of doing custom physics effects, as for the Wisps spell). Because Half-Life 2’s projectile classes are very specific (variations on grenades), it seems that we would get little benefit by extending their functionality. For this reason, we will implement a generic projectile class and inherit from it for all our spell projectiles.
2.12
Ice Knives (Quick Cast)
Description

This spell fires several shards of ice in a 30-degree arc in front of the player.
Requirements

· Fires in a cone shape with a 30-degree aperture

Options
Projectile Weapon
· Advantages:
· Similar to Fireball (less new code)

· Disadvantages:
· Potentially much more to replicate

Trace Weapon
· Advantages:
· Less to replicate

· Simplifies distribution

· Disadvantages:
· Visible shards feel disconnected from gameplay

Design
Projectile Weapon

Using a small number of projectiles is the best solution. Implementing Ice Knives as a trace weapon seems obvious because of the spell’s functional similarity to a shotgun weapon, but we will have relatively large, visible shards of ice, and we would like to avoid the disconnect between the motion of those shards and damage taken. As long as we keep the number of shards low (a half-dozen should suffice), we can avoid an unwieldy amount of replicated data while preserving solidity in gameplay.

2.13
Ice Knives (Charge Cast)

Description

This spell creates an explosion of ice which “ripples outward” from the player.

Requirements

· Destroys runes and other projectiles

Options

Projectiles

· Advantages:
· Timing of gameplay effects is synchronized with visuals

· Disadvantages:
· Could require many projectiles which all have to be replicated

Immediate Area Effect

· Advantages:
· Can efficiently affect all entities within a radius

· Disadvantages:
· Possible disconnect between visual effect and gameplay effect

Design
Immediate Area Effect

Unlike the quick cast form of Ice Knives, using an immediate effect instead of spawning projectiles seems preferable here. Covering 360 degrees around the player would require an inordinate number of projectiles, and their gameplay effects would have to be handled independently (each one requiring a separate replicated event). If the effect is instead instantaneous, it can be a single replicated event with the effects processed client-side. Given the definition of the spell as an “explosion,” it seems fair to assume that the motion will be relatively fast, which will minimize visual disconnect.
2.14
Shield (Quick Cast)

Description

A magical shield appears for a brief duration on the caster’s hand.

Requirements

· All Quick Cast projectiles and non-Area of Effect Charge Cast projectiles are reflected in the direction the caster is facing

· The caster may not begin charging a new spell while the shield is active

· Mana does not regenerate while the shield is active

Options

Shield-Based Collision

· Advantages:
· Establishes the shield as a physical object in the world

· Disadvantages:
· More difficult to implement

· Reduces effectiveness of spell

Character-Based Collision

· Advantages:
· Simpler to implement

· Makes spell more effective and easy to use

· Disadvantages:
· Could appear unnatural

Design
Character-Based Collision

Our solution disassociates the visible in-game shield from the spell’s effect. The shield does not have a collision bound of its own. Instead, the player’s standard collision bound is used for all collision events, and the shield effectively intercepts the event and handles the outcome. The definition of the Shield spell indicates that the caster must be facing oncoming projectiles in order to reflect a spell; we will test this with a dot product between the character’s facing vector and the projectile’s velocity to determine if the shield was hit.
2.15
Shield (Charge Cast)
Description

This spell covers the caster in a magical bubble which reflects all magic.
Requirements

· Reflects all magic, including stray mana

· The caster may not begin charging a new spell while the shield is active

· Mana does not regenerate while the shield is active

Options

Shield-Based Collision

· Advantages:
· Simple to implement

· Looks more natural (shots reflect off the actual shield boundary)

· Disadvantages:
Character-Based Collision

· Advantages:
· Same method as used for Quick Cast

· Disadvantages:
· Projectiles could visibly penetrate shield

Design
Shield-Based Collision

For the Charge Cast, it is preferable to use the actual bounds of the visible shield because it is easily described mathematically (a perfect sphere) and its position relative to the character is constant, unlike the Quick Cast version. Otherwise, the Charge Cast is almost identical to the Quick Cast Shield spell. Stray mana reflections will have to be handled separately unless mana particles are actually represented as spell projectiles (and thereby inherit projectile event handling).
2.16
Maelstrom (Quick Cast)
Description

The Maelstrom spell produces a powerful burst of wind that knocks players and physical objects away from the caster.

Requirements

· Projected in a cone from the caster

· Players and objects struck by Maelstrom are pushed away from the caster

· Players and objects which are thrown into walls take damage

Options

Trace Weapon

· Advantages:
· Simple to implement

· Sensible for gameplay

· Disadvantages:
· Gameplay effects could be out of sync with visuals

· Spell cannot be dodged

Projectile Weapon

· Advantages:
· Visible objects appear to cause knock-back

· Spell can be dodged

· Disadvantages:
Havok Physics

· Advantages:
· Get damage on collision for free (presumably)

· Disadvantages:
· Gameplay effects are subject to physics API’s whims

Tagging

· Advantages:
· We maintain control of gameplay effects

· Disadvantages:
· Have to check this tag for every entity-world collision

Design
Projectile Weapon and Tagging

Because Maelstrom is a low-cost spell with the potential to cause damage, it should be possible to dodge. Primarily for this reason, we will implement Maelstrom as a projectile weapon. For simplicity and to maintain more control over the gameplay effects, we will stay away from the physics API. We will simply tag (for a brief duration) any entities struck by Maelstrom and then apply damage if those objects collide with the world.
2.17
Maelstrom (Charge Cast)

Description

Maelstrom (Charge Cast) creates a large tunnel of wind flowing outward from the caster.

Requirements

· Players, objects, and spell projectiles caught in the spell’s effect are thrown along the direction of the tunnel
· Exists for a duration of two seconds

Options
Bounding Volume

· Advantages:

· Simple implementation.

· Matches the gameplay description verbatim.

· Disadvantages:
Havok Physics

· (Same as Quick Cast)

Tagging

· (Same as Quick Cast)

Design
Bounding Volume and Tagging

As with Quick Cast, we will prefer to tag entities for taking damage instead of delegating to the physics API. During the spell’s duration, any object which intersects the cylinder bound is hurled in the direction of the cylinder (away from the caster). This could either be done by immediately setting the velocity or by adding a force over time while the object is intersecting the cylinder, and this decision will depend on which one is more appealing to play. (Initially, we will simply set the velocity to make the effect instantaneous.)
2.18
Runetrap (Quick Cast)

Description

This spell places a glowing rune at the caster’s feet. The rune behaves like a proximity-triggered mine.
Requirements

· Triggered only when the caster’s opponent steps on the rune

· Vanishes after a ten-second duration has expired

· If a caster attempts to place more than three runes, the existing runes are replaced in least recently placed order
Options

Spell Managed Rune Objects
· Advantages:

· Straightforward implementation.

· Matches design verbatim.

· Disadvantages:

Design

Spell Managed Rune Objects

The spell object will maintain a fixed-size (3) container of pointers to the placed runes. This array can be regarded like a FIFO queue, albeit with the ability to remove arbitrary elements. Whenever a rune’s duration expires or it is triggered, it informs the spell object of this event so that the spell may be removed from the array. If a player tries to add a rune when there are already three, the front rune in the array is destroyed to make room for the new rune.

The behavior of the runetrap itself is trivial. The runes store a reference to their caster. Then when a character intersects the rune’s bounds, it checks whether that character is the caster. If not, it explodes.

2.19
Runetrap (Charge Cast)

Description

This spell is the same as the Quick Cast form, albeit larger and more deadly.
Requirements

· 50% larger visible size and bounding volume than the Quick Cast version

· Deals twice as much damage as the Quick Cast version when it explodes
Options

Spell Managed Rune Objects

· (Same as Quick Cast)

Design

Spell Managed Rune Objects

The Charge Cast version of Runetrap shares the fixed-size array of runes with the Quick Cast version. The implementations are almost identical and share the same code. The only changes will be to the Runetrap objects placed in the world. These will reflect the larger visible size and bounding volume as well as the higher damage.
2.20
Teleport (Quick Cast)

Description

The caster vanishes momentarily and reappears a short distance forward.
Requirements

· Treated as a brief invisibility plus speed boost
Options

Modify the Character

· Advantages:

· Straightforward implementation.

· Matches design verbatim.

· Disadvantages:

Design

Modify the Character

By virtue of the spell’s definition, we have a simple solution to the Teleport spell. It makes the caster invisible for a brief time and multiplies her movement speed by some value. This avoids potential problems with actually teleporting the character, such as inadvertently stepping into world geometry or out of the bounds of the world.
2.21
Teleport (Charge Cast)

Description

Both players vanish briefly and then switch locations.
Requirements

· The Shield spell stays bound to the location of its caster.
Options

Directly Exchange Player Locations

· Advantages:

· Straightforward implementation.

· Matches design verbatim.

· Disadvantages:
· May run into issues with player prediction code causing players to clip through geometry.

Design

Directly Exchange Player Locations

This is a fairly basic effect, although the specific interaction with the Shield spell will have to be explicitly handled. (The GDD does not define that the Shield spell protects against Teleport, although if it does, then this consideration is irrelevant because the situation cannot occur.) The implementation is to exchange the players’ absolute world positions instantly. To deal with the possible prediction code issues the players’ previous movements and velocity would be nullified.

2.22
Wisps (Quick/Charge)

Description

The quick and charge versions of Wisps are very similar. The Wisps behave as a homing attack which explodes on impact.
Requirements

· Quick cast: 3 wisps fired.

· Charge cast: 9 wisps fired.

· Wisps must explode when they strike an object, wall, or character.

· Wisps have a limited homing ability.

· Wisps should not overlap (this could be confusing and not visually satisfying).

· On collision with an enemy spell that would cause the wisps to be defeated all wisps are destroyed.
Options
Boid-Wisp Projectiles

This strategy calls for each wisp projectile to be totally self contained and operate off simple rules to perform its task.
· Advantages:

· Implement for quick cast, scales for charge cast.
· Simple solution which is quick to implement.
· Possibility of interesting gameplay-enhancing emergent behavior.
· Disadvantages:
· May require large amount of tweaking
· Inflexible to design changes.
· Possibility of unpredictable undesirable emergent behavior.
Per-Cast Wisp Manager

This strategy calls for each casting of either version of Wisps to spawn a logical entity wisp manager object that controls the wisp projectiles.
· Advantages:

· Provides a central point of control over Wisps.
· Can be deterministic or lend to emergent behavior depending on how defined.
· Allows an absolute level of control over Wisps.
· Disadvantages:
· More complex implementation.
· May require large amount of tweaking.
Design

Per-Cast Wisp Manager

While the idea of using a Boid-driven AI to control the Wisp projectiles is exciting there are too many unpredictable complications associated with it. To simply get the Wisps to behave in a manner as required may be laborious, however since they are inflexible to design changes the labor may be repeated.

The only disadvantage of the Per-Cast Wisp Manager is that the initial implementation adds an extra layer of complexity. This is a price that is worth the addition of control. The wisp manager can still control the wisps in a Boid-driven AI fashion, however it now has the ability to manage the group of wisps as a whole.

This will prove invaluable for making the wisps behave as a congruent group, changing the behavior of wisps through revisions, and for satisfying the conditions of the GDD. The GDD states that if a single wisp collides with an enemy spell projectile that would destroy it all the wisps in that cast group are destroyed.

The initial implementation of the wisp behavior will be similar to that of a velocity-driven projectile which steer toward the enemy position at a constant rate. Additionally wisps will exhibit a slight repulsion from each other. The repulsion is counteracted by a gravitational attraction with the enemy caster. This should result in an interesting behavior where wisps seek toward the enemy and then collide with him while possibly showing some interesting orbital dancing.

2.23
Lightning (Quick/Charge)
Description

The quick mode allows the player to shoot lightning bolts from his avatar at the enemy. In the charged mode, a bolt of lighting strikes the enemy from above.
Requirements

· Quick

· Lightning strikes the caster and flows through him in a bolt that travels straight ahead, damaging all objects or players in its path. The bolt continues until it strikes a wall. Until the bolt contacts a wall, the caster is still considered Casting and may not move or cast another spell.

· Charge

· The moment this spell is cast, there is a peal of thunder and a dark shadow appears over the opposing player's location. After .3 seconds, an immense lighting bolt strikes this spot, damaging anything there—including characters that have been knocked down.

Note that the location that the bolt will strike is locked when this spell is cast—it does not follow the opposing character if she moves before the bolt strikes.

Until the bolt strikes, the caster is still considered Casting and may not move or cast another spell.
Options

Model the lighting as a very fast projectile entity
· Advantages:
· Same design as most other projectile spells. Keeps the code unified.

· Disadvantages:
· May not behave exactly like lightning.

Just use a ray trace and deal damage over time
· Advantages:
· More “lightning-like.”

· Disadvantages:
· May be harder to create the lightning effect.

· Makes it harder for it to interact with other spells. It would require a special case to detect collisions with lightning.
Design

Model the lighting as a very fast projectile entity

The spell will modeled as a single projectile in both its quick and charge cast forms. The projectile will appear as a traveling lightning bolt by using scrolling textures distorted with noise. For the charge cast, the projectile will appear directly above the player’s opponent, and be shot straight down.
2.24
Shatterfoot (Quick/Charge)
Description

The player’s avatar jumps into the air, when he lands he generates a shock wave that damages anything within a pre-defined radius.
Requirements

· Quick

· The caster leaps into the air, flying as high as a normal jump would take him. When he lands, a shockwave ripples out from his feet, damaging nearby objects and characters.

· Charge

· As Quick Cast, but the jump is 2x higher than a normal jump.

· Characters that are knocked down may still take damage from the shockwave.

Options

Use a cylindrical entity for collision
· Advantages:
· Congruent with existing projectile or entity spawning for spells.

· Disadvantages:
· Does not radiate outward from the center point, but perhaps an additional check against the distance from the player can be made for something that collides with the entity.
Design

Use a cylindrical entity for collision

When the player lands, a large very flat cylindrical entity is spawned. For anything that collides with the entity, check its distance from the player to make sure that it is within a shock wave radius that expands outward from the character. If so, then affect the colliding object appropriately.

Visually, the shockwave may be represented by a ring texture that is scaled larger over time so that ring keeps up with the shockwave radius.
3.
Risks

3.1
Overscoped GUI

Description

In order to satisfy the design specification of a console-style user interface, we intend to overhaul the Half-Life 2 front-end entirely. This will include a simpler main menu (with detailed options hidden away or culled completely); gamepad control on menu screens; possibly a new implementation of the server browser; and our own character, spellbook, and arena selection screens. This is a large project in and of itself, and there is an unfortunate tendency to regard this system as “merely” the GUI.

Impact

We can always resort to using a simple modification of the Half-Life 2 GUI in the event that we simply cannot implement our own interface. The biggest effect would be the time wasted developing the system if it was a failure.

Probability

Much of the Source engine’s GUI is hidden away from mod developers, and it seems highly likely that we will not be able to implement our GUI as described.

Visibility

Our schedule includes early research and development of the GUI, so we should be able to predict early in the development cycle whether our goal is feasible and avoid wasting more time if it seems overscoped.

3.2
Underdefined Visual Effects

Description

It has been made clear from the start of development that the artistic direction of Grimoire depends on brilliant spell effects. However, exact details of the visual aspects of each spell are not yet forthcoming. This ambiguity feeds forwards into our particle and shader components.

Impact

This could go one of two ways: either we prepare for any effect imaginable and potentially spend too long developing exceptionally robust systems, or we implement each effect individually as it is needed and find ourselves wrestling with and finally refactoring the systems every few weeks.

Probability

We can mitigate or entirely nullify this risk by speaking with the art and design leads and obtaining a clearer definition of what must be implemented.

Visibility

Without a definite plan for the effects systems, we will be unprepared for any changes we may need to make. Low visibility actually seems to be the nature of the risk itself.
3.3
Scope of Spells System
Description

Although Team Pants has been mostly diligent in adhering to the KISS principle, the spells system is fairly large (eighteen unique effects) and contains a number of very specific interactions which could result in an explosive growth of tangled code.

Impact

The team plans to iteratively improve the design based on testing, so we will undoubtedly return to the spell code frequently during development. Having a large amount of messy code in this system will inhibit our work and leave us at risk to introduce bugs more easily.

Probability

Our designer has assured us that the game design is scaleable, and if the sheer number of spells begins to appear monolithic, we have the option to make judicious cuts to the design. However, we believe that we have planned our systems to scale well to the large number of spells, and we are unlikely to find ourselves in that circumstance.

Visibility

If each spell we add requires increasingly more time to complete or requires modifying every previously written spell, we will know that we are in trouble and can then decide whether we can afford to redesign the system, or else propose simplifications to the game design.
3.4
Research-Based Tasks

Description

Because we are generally unfamiliar with the Source engine and Half-Life 2’s game code, each task will require some amount of research into the existing code base. This is exacerbated by the scarcity of documentation (by Valve or independent mod developers). Research-based tasks are dangerous because they add an element of ambiguity to the technical design and require an undeterminable amount of time to complete.
Impact

In the extreme case, our development rate could be seriously hampered by the need to research. Realistically, the impact would likely be less than that, delaying the completion of large systems by a week or two at most.

Probability

Based on our prototype and preliminary research, Half-Life 2’s code actually seems easier to work with than a cursory inspection might lead one to believe. Reading and stepping through the code can actually provide a better explanation than any available documentation for certain tasks. Generally, the probability that research will substantially impede development is low.
Visibility

This risk has relatively low visibility because the line between research and development is sometimes blurry. Spending more time reading code than writing it is not necessarily indicative of a problem. As long as we do not miss milestones, we will have to assume we are doing well in this regard.
3.5
The Iterative Process (and the Potential for Rework)

Description

We intend to do a great deal of internal and external playtesting and iterate the game’s design based on the feedback. This is a very positive thing for the game, but it has the unfortunate side effect that some amount of work will need to be changed or thrown out.

Impact

Ideally, our systems will be generic enough that gameplay revisions will manifest as nothing more than changing some variables (and in the best case, it would be a designer’s job to make these changes). We have to consider that the reality may be worse, especially because many of our spell effects could be hard-coded. We may lose days or weeks of work redoing these effects (and worse, we could be making these changes until the very last minute).

Probability

High. Our team’s design process practically dictates that someone will be redoing their work, and our decision to implement gameplay elements ourselves (instead of, for example, setting up a spell scripting system for the designers) invites that burden upon the software team.
Visibility

It should be clear as we implement the various gameplay systems how easily they can be tweaked, and we can at least set up some degree of parameterization wherever applicable to alleviate the amount of hard-coded behavior.

3.6
Balance Between Team Game and Directed Focus Study

Description

Thus far, TGP has consumed the time of most students far more than their DFS or Master’s projects. That balance may swing the other way in the future, and there could be many days or weeks when team members are unable to contribute in a meaningful way to the project.

Impact

Obviously, the division of time between the two projects implies at least a halving of the apparent number of man hours until the project’s completion. The actual time available could be much less than that if team members devote more time to their DFS.

Probability

We have established a set of core hours during which the team has agreed to be present in the studio. Although it is not mandated that anyone be working on the game at this time, there is an unspoken obligation to do so (and more importantly, each individual is available in case another team member needs his help). It actually seems more probable that the balance of time will tend to favor the project over DFS.

Visibility

Weekly task lists will help us determine who is doing the appropriate amount of TGP work.
3.7
Noisy Work Environment

Description

We have a fifteen-man team comprised of artists, level designers, and programmers, and of all kinds of personalities—in a single room. Although it does facilitate communication amongst the team, this environment is not always conducive to working. Interruptions are frequent and the background noise level is sometimes high.

Impact

A poor environment could slow our development rate or cause irritability amongst team members.

Probability

The environment may only be a problem to certain members of the team, and these members may still be able to work adequately despite it. The probability of the environment seriously hampering development is low, but the likelihood of it facilitating friction between individuals seems somewhat higher.
Visibility

Each individual should be self-aware enough to recognize the ill effects of a poor environment, and the leads and producer will also be aware of this problem if it begins to occur.
4.
Source Control

A Subversion (SVN) repository has been created on the Guildhall’s server (ghsrv2). All digital assets which may undergo revision by one or more developer (including documentation, program code, raw art, compiled art, levels, etc.) are committed to this repository. Assets which need to be shared but will not be modified (e.g., art reference images) should be placed in a network folder, not under source control. Temporary, unshared assets (e.g., compiled code) should not be checked into source control either.

Developers will use the Windows shell interface TortoiseSVN to get source control updates and commit their local changes to the repository. Team members are expected to comply with a small number of rules in regard to the source control. First and most importantly, changes should be tested locally before being committed to source control. Each individual must write a descriptive summary of their changes (this is enforced by a SVN server hook). Furthermore, it is strongly recommended that changes be kept small and atomic whenever possible. This will assist the software team in tracking down causes of faulty builds.
5.
Quality Assurance Plan

Mandatory one-hour testing sessions will be held every Monday starting at 4 P.M. The programming team will provide a working build at this time. Each team member must participate in this session unless excused by his lead. Each session, the team will form five groups of three people. Different groups are formed each week, consisting of one member from each discipline (except for one group of two LDs and one SD). Two testers play the game while the third writes down the bugs found. After 15 minutes, the note taker and a tester who hasn’t yet taken notes switch roles. When bugs are found, testers should make all efforts to determine exactly how to replicate the issue. This process is fully documented by the note taker. Once a group has completed its three testing cycles, they spend at least 15 minutes reviewing the bug list to ensure that all bugs are thoroughly documented. The final bug list from each group is turned into the QA lead. The QA and SD leads will merge the bug lists and produce a master list that is entered into the bug database.

Each bug’s status is initialized to [LD/SD/Art] Open and is assigned to the appropriate lead for distribution to their team members. The bug database sends emails to individual team members when bugs are assigned to them. This ensures that all members have notice of the bugs they are to work on. While individual team members are working on a bug, they should set the status to In Progress. After a bug is fixed, the team member describes the resolution process in the bug database, sets the status to Completed, and assigns the bug to the lead for review. The lead checks to ensure that the bug is fixed. If it is, the lead sets the status to Completed&Tested; otherwise, they reopen the bug report and reassign the bug to a team member. A list of the Completed&Tested bugs is handed out to each group for Monday testing sessions so each bug can be tested thoroughly to ensure that it is fixed before being closed by the QA lead.
6. Milestone Schedule
October 25, 2006
· [David] Camera constraints can be placed in Hammer

· [David] Camera position conforms to placed constraints

· [Ben] Gamepad input can be captured on GUI

· [Justin] Spell manager receives spell-relevant control input

· [Justin] Spell manager architecture for delegating effects is stubbed out

· [James] Stray mana pickups can be collected in-game

· [James] Stray mana emitters can be placed in Hammer

· [Josh] Particle emitters are stubbed out

· [Josh] Particle updaters are stubbed out
November 8, 2006
· [David] Fireball (Quick Cast) spell architecture is stubbed out

· [David] Fireball (Quick Cast) projectile entity is stubbed out

· [Ben] Grimoire’s main menu is in-game

· [Ben] Replay menu appears after match

· [Ben] Replay menu works as intended

· [Justin] Spell manager calls spells’ visual charging-effects functionality
· [Justin] Spell manager call spells’ casting gameplay functionality
· [James] Stray mana emitters disperse stray mana at regular intervals

· [James] New round is started when a player dies
· [James] Timer resets when a new round is started

· [James] Surviving player’s health and mana are reset when a new round is started

· [Josh] Particle emitters emit particles
· [Josh] Particle emitter parameters control the appearance and number of particles

· [Josh] Particle updaters control particles

November 22, 2006
· Fireball (Quick Cast) gameplay effects are implemented

· Fireball (Charge Cast) gameplay effects are implemented

· Fireball (Quick Cast) visual effects are implemented

· Fireball (Charge Cast) visual effects are implemented

· Ice Knives (Quick Cast) gameplay effects are implemented

· Ice Knives (Charge Cast) gameplay effects are implemented

· Shield (Quick Cast) gameplay effects are implemented

· Shield (Charge Cast) gameplay effects are implemented
· Breakable mana objects release stray mana when destroyed

· Breakable mana object spawn points can be placed in Hammer

· Breakable mana objects will spawn at regular intervals

· Character selection screen is implemented (at least as a placeholder)

· Spellbook selection screen is implemented as a placeholder

· Arena selection screen is implemented server-side
December 6, 2006 (First Playable)
· Maelstrom (Quick Cast) gameplay effects are implemented

· Maelstrom (Charge Cast) gameplay effects are implemented

· Runetrap (Quick Cast) gameplay effects are implemented

· Runetrap (Charge Cast) gameplay effects are implemented

· Teleport (Quick Cast) gameplay effects are implemented

· Teleport (Charge Cast) gameplay effects are implemented

· Wisps (Quick Cast) gameplay effects are implemented

· Wisps (Charge Cast) gameplay effects are implemented

· Lightning (Quick Cast) gameplay effects are implemented

· Lightning (Charge Cast) gameplay effects are implemented

· Shatterfoot (Quick Cast) gameplay effects are implemented

· Shatterfoot (Charge Cast) gameplay effects are implemented

· Spellbook selection screen lets players choose from default spellbooks

· Custom spellbook creation screen lets players pick all their spells
Team Pants and The Guildhall at SMU
Page 6
10/20/2006

