David Pittman

May 19, 2006

My scripting language compiler and virtual machine closely follow the baseline features with a syntax that is similar to C. Function calls work correctly and variables may be numbers, strings, or vectors. Floating-point numbers are not supported—all numeric values are signed integers. Additionally, multidimensional indexing is not supported, although this can be overcome with high-level functions (which I have written in my test source code). The virtual machine does not do any memory management. A very simple BASIC-style for-loop has been added. Certain operators have special behavior on vectors and strings. These are listed below the grammar.

Grammar:
file

=
[funcdef ...]

funcdef
=
ident "(" [ident ... ","] ")" comp-stat

statement
=
exp

|
comp-stat

|
"if" "(" exp ")" statement ["else" statement]

|
"while" "(" exp ")" statement

|
"return" [exp] ";"

|
ident "=" exp ";"

|
"for" ident "=" exp "to" exp statement

comp-stat
=
"{" [statement ...] "}"

exp

=
"(" exp ")"

| exp op exp

| unop exp

| funccall

| ident [index]

| number

| literal

| vector

funccall
=
ident "(" [exp ... ","] ")"

op
=
"+" | "-" | "*" | "/" | "%" | "^" | "==" | "!=" | ">"

| "<" | ">=" | "<=" | "&" | "|"

unop

=
"-" | "!"

number
=
(0-9 ...)

literal
=
""" [any character except "] """

ident

=
(a-zA-Z)[a-zA-Z0-9_ ...]

index

=
"[" exp "]"

vector
=
"{" [exp ... ","] "}"
Non-standard operation meanings:

String + String concatenates the strings and pushes the reference to the result onto the stack.

String + Number (or Number + String) converts the number to text, concatenates the strings, and pushes the reference onto the stack.
Vector + any variable pushes the variable onto the back of the vector and pushes the result onto the stack.

Vector * Vector concatenates the vectors and pushes the reference onto the stack.

!Vector pushes the size of the vector onto the stack.

!String pushes the size of the string (not including the null-terminating character) onto the stack.

