David Pittman
The Guildhall at SMU

October 5, 2006

Master’s Project
Technical Design Document

Practical Development of Goal-Oriented Action Planning AI
Contents
Chapter 1: Technical Components
.
.
.
.
.
.
3

1.1
Overview
.
.
.
.
.
.
.
.
3

1.2
Product Description
.
.
.
.
.
.
.
3
1.3
Components
.
.
.
.
.
.
.
.
4
1.4
Resource Usage
.
.
.
.
.
.
.
9
1.4.1
Memory Map
.
.
.
.
.
.
.
9
1.4.2
CPU Budget
.
.
.
.
.
.
.
10
1.5
Testing Methodology
.
.
.
.
.
.
.
10
1.6
Development Tools
.
.
.
.
.
.
.
11
Chapter 2: Schedule
.
.
.
.
.
.
.
.
11
2.1 Milestone Schedule
.
.
.
.
.
.
.
11
2.2
Risks
.
.
.
.
.
.
.
.
.
15
Chapter 1: Technical Components

1.1
Overview


My Guildhall Master’s project, codenamed Carnival, is a demonstration of an artificial intelligence system called Goal-Oriented Action Planning (GOAP).  GOAP is a high-level decision-making technique in which a series of actions (a plan) is generated to satisfy an NPC’s goals.  A simpler form of this goal/action architecture (without planning) has been utilized in such games as Monolith Production’s No One Lives Forever 2 and Irrational Games’ SWAT 4, while Monolith’s F.E.A.R. used full-fledged action planning.
My intent is to develop a GOAP AI architecture along with debugging and design tools that would make it practical for use in a game development studio.  As described in my proposal, GOAP builds a list of NPC actions to satisfy a goal.  Goals are defined as some proposition about the world state.  Actions are defined by their world state preconditions and effects (literally, what must be true for the action to occur, and what will change as a result of the action).  Building a plan is accomplished by searching the potential action space (with the A* algorithm) for a low-cost plan that can will produce the goal’s desired world state and can be completed given the current world state.

1.2
Product Description


The end result will be a playable Unreal Tournament 2004 mod with an emphasis on squad-based combat.  The player will be able to give a few simple, high-level orders to a friendly squad by means of a point-and-click command ring (a la Brothers in Arms: Road to Hill 30).  Both friendly and enemy units will autonomously resolve their goals such that they will usually follow orders but not to the detriment of their health.  Use of cover will feature prominently in the gameplay, and all units (including the player) will have the use of rifles, pistols, and/or grenades.

The final product also includes the debugging and design tools.  These will be developed as I need them and cannot be documented thoroughly at the commencement of the project; however, they are likely to include in-game visualization using text and lines, as well as some kind of historical record of the path and previous states of each NPC.  These will most likely be activated through console commands for the sake of development time, although a debugging HUD would be desirable.  On the design side, there will be a set of new navigation points for assisting and controlling the AI, and behaviors will be fully customizable through the UnrealEd interface by exposing goal sets, action sets, and tuning variables to the editor.
1.3
Components


The components for this project will be UnrealScript classes.  (Due to the nature of UnrealScript, performance will be a primary concern in the planner.)  The core components of the GOAP system are listed below.  Note that there is not necessarily a one-to-one correspondence between goals and actions as there would be in a non-planning goal-based system.
CarnivalAIController


This controller extends Unreal’s ScriptedController class and is responsible for maintaining and executing an agent’s action plan.  The base Controller class has latent movement functions which are employed in this class’s state code.

Dependencies: Action, Goal, WorldState, Sensor, PathNode, Planner
CarnivalPlayerController


A subclass of the Unreal’s xPlayer controller, this controller exists to provide an interface for squad control and debugging commands.


Dependencies: None
CarnivalPawn


This pawn maintains sets of classes of potential Goals and Actions.  These arrays would be a more ideal fit in the AIController, but putting them in the Pawn allows me to expose them to designers in the editor.


Dependencies: CarnivalAIController, Action, Goal

CarnivalGameInfo


This simply exists to inform Unreal to use my Pawn and Controller classes.  It extends DeathMatch, which works fine as a single-player base.


Dependencies: None

AISymbolBase


I chose to use an abstract base class for Actions and Goals because they share the WorldStateProp struct and key enumerations.  This class does nothing useful by itself but contains the definitions of the aforementioned struct and enum.

Dependencies: None

WorldStateProp


Defined in the AISymbolBase class, this struct contains an enumerated key describing a world state property, a target Actor reference to describe to whom or what the property refers, and a Boolean value describing the current state of the property.  (Other types of values can be added if needed, with the enumerated key implying the type that any given property would use.)


Dependencies: None

Goal


Goal is an abstract base for the myriad of goals which an agent could potentially try to satisfy.  A goal is defined in terms of desired world state properties.  Each goal overloads a function to calculate its relevancy for the calling agent at any given moment.

Dependencies: WorldStateProp

Action


Action is an abstract base for each specific action an agent could potentially perform to satisfy a goal.  An action is defined in terms of world state preconditions (which must be true for the action to occur) and effects (which will be true if the action succeeds).  Each Action also has functions for checking “context preconditions” (more complex logical preconditions) and executing the action.


Dependencies: WorldStateProp, CarnivalAIController

Planner


This singleton class handles the A* search to generate action plans, given a goal set and action set from a Controller.  Although this task would be well-suited as a member function of the AIController, I will eventually add hierarchical AI.  It would be clumsy to use copied-and-pasted searching code for both a Controller and a Squad, so it makes sense to put it in one place.

Dependencies: Action, Goal

WorldState


A WorldState is a collection of world state properties.  Each agent contains a WorldState object which describes what that agent knows about the world (as opposed to each agent having perfect global knowledge).

Dependencies: WorldStateProp
Sensor

Sensors are used to compute and cache stimulus data for an agent.  Because some precondition data is expensive to calculate (ray casts, pathfinding, etc.), it is useful to poll this data periodically and cache the results so that the planner can have immediate access to whatever it needs.


Dependencies: CarnivalAIController

Squad


The Squad class maintains a high-level strategic plan for a group of multiple pawns.  The squad plan is formulated in the same fashion as an individual’s plan, but the actions are not directly followed.  Instead, the squad’s actions “suggest” specific goals to the members of the squad (by increasing that goal’s relevancy score when the unit needs a new goal).  This allows the pawns a certain degree of autonomy to protect themselves or take easy shots while still following orders in the general case.


Dependencies: Action, Goal, Blackboard, CarnivalAIController
Blackboard

Blackboards are simply a place to store shared memory.  They facilitate coordinated behavior (between multiple agents or multiple systems within a single agent) as well as simplifying agent architecture.  Blackboards are used to communicate Pawn sensor data to the Squad (and by extension, any other Pawns in the squad).

Dependencies: WorldState
PathNodes


In addition to Unreal’s basic PathNodes, I will be adding new navigation points which inform the AI where it can use certain actions (e.g., CoverNodes define where a Pawn can take cover from enemy fire).


Dependencies: None
[image: image1.png]PathNode

’
O O Q
Camnivatzamy >
O

ATSymbolBase

>< ‘§y~

CarnivalAIController [0

Sensor

Planner

WorldStateProp

WorldState

Blackboard




1.4
Resource Usage

1.4.1
Memory Map


By virtue of extending from heavyweight Unreal superclasses, some of my classes will require disproportionate amounts of memory.  For example, each new Pawn introduces up to 1MB in new assets.  The budget listed below lists only the amount of memory I expect to consume in addition to Unreal’s requirements.
Component
Memory Budget
Pawns

1 KB
Controllers
2 KB
Sensors
2 KB

WorldStates
4 KB

Blackboards
2 KB

Planner
1 KB
1.4.2
CPU Budget:

To calculate the CPU budget, I tested an intensive map in Unreal Tournament 2004 and determined that it runs at worst about 80 fps (but as high as 130 fps).  Assuming a constant 80 fps performance, I have about 4ms budgeted for the AI to maintain 60 fps.
Component
CPU Budget

Pawns

~0 ms

Controllers
1 ms

Sensors
1 ms

WorldStates
~0 ms
Blackboards
~0 ms
Planner
2 ms
1.5
Testing Methodology


Testing is scheduled to be an important part of my project.  As I am working with UnrealScript, I will not have access to a reliable debugger.  Most of my basic debugging will be primitive log statement and code reading.  However, I will be focusing on developing a diagnostic toolset for testing and debugging the AI system.  These tools will allow me to view (and perhaps modify) the state of the AI to observe why the system behaves in certain ways and make improvements as necessary.  As the product enters a playable form, I will employ the help of other students or faculty to test both the gameplay and the toolset.  My observation of their testing as well as their feedback will be essential to improving the demo.
1.6
Development Tools


Unreal Tournament 2004


Unreal Development Environment (UDE v3.0)


TortoiseSVN

Chapter 2: Schedule

2.1
Milestone Schedule


I have scheduled my milestones at two-week intervals (every other Thursday).  Where possible, I have allotted myself time to refactor and improve the design of the code and the user experience.  Concessions have also been made for time to work on the team game project, as well as for special events (holidays and GDC).
October 5


A Pawn is able to be controlled through script code, with all UT AI removed.
Primary components of GOAP system are stubbed out.

Pawn’s goal set and action set are configurable in UnrealEd.

A list of potential goals and actions is written.
At least one new node (CoverNode) is added.
At least two sensors (SensorPawns and SensorNodes) are working.
October 19 (Proof of Concept)

The fundamental portions of the GOAP architecture work.

Pawns select a goal based on its relevance.

The planner builds a list of actions as intended.

At least two goals (TakeCover and KillEnemy) and two actions (GoToNode and FireWeapon) are working in the game.

A Pawn’s goal and action plan are viewable using “showdebug.”
November 2


Squad functionality is stubbed out.

LDs can define Squads explicitly in the editor, and lone Pawns will form Squads based on proximity at runtime.
The debug display is expanded to include information regarding squads, as well as a prioritized list of goals (to see what competed with the active goal).
At least one new goal (Ambush/Charge) is working in the game.
November 16


GOAP is implemented for Squads.

Squads have a unique set of goals and actions which “suggest” specific goals to the members of the squad by increasing their relevance.

At least one goal (Flank) and two actions (SuggestTakeCover and SuggestAmbush/SuggestCharge) are working in the game.

The debugging tools have been improved to include some in-world line and text display to indicate a Pawn’s path and target Actor.
November 30


The player has a point-and-click interface to direct one or more friendly squads to move, fire at an enemy position, or take cover.
Friendly squads behave just like enemy AI squads, but the player takes the place of the Squad class, with the interface providing the goal suggestions directly.
December 14 (First Playable)

Code is refactored, debugged, and cleaned up.

A demo map is built to exhibit the fundamental gameplay and AI behavior.

Extensive internal and external testing of the gameplay and debugging tools is done to evaluate the project and determine its future requirements.
January 18


A debug “snapshot” system is built to expose the past location and state of each entity over a recent time range.

February 1


More tactical rules for the AI are added (clearing rooms properly, flushing out targets with grenades, etc.).

At least four new goals, four new actions, and two new sensors are added for Pawns.

At least two new goals and two new actions are added for Squads.

Code is refactored as needed.

Debugging snapshot system is improved as needed.

February 15 (Alpha)

More goals and actions are added for variety as needed (AI content is locked after this milestone).

At least one large, thorough test map is built.

The tactical gameplay is tested and evaluated by external users on this map.

Debugging tools are tested by external users.
Performance is evaluated.
March 1 (Beta)

At least one “fun” map is built.

This is the map which will be used to show the game at exhibition.

It is aesthetically pleasing, fun to play, and clearly demonstrates the benefits of the GOAP system.
Bugs are fixed.

Performance is improved.
March 15 (Gold)

Code is bug-free.

Exhibition map is bug-free.
Performance is consistently high.
2.2
Risks

Unfamiliarity with code base


I will be working with core components of Unreal’s AI, which is almost entirely new to me.  There are very likely some treacherous subtleties in the way Unreal handles state code and latent code which will require extensive testing to understand.  However, this would merely delay development by a couple of days at worst.


Impact: Low, I have to spend a few more days experimenting with UnrealScript

Probability: High


Visibility: Low
Performance issues


Every single component of this project will be interpreted script code.  Fortunately, there is primarily one complex algorithm involved (the planner’s A* search), and there is a wealth of information available on improving the performance of A*.  Sensor checks could be expensive, but they are polled relatively infrequently and cached for immediate access by the planner.  It seems possible that CPU-based performance issues may never arise.  I do not expect memory to cause performance problems, either.  As detailed above, the memory requirements for this project are barely more than a typical Unreal Tournament 2004 game type.

Impact: High, I might have to cut large quantities of NPCs from a map or spend much longer than anticipated optimizing the algorithms

Probability: Low

Visibility: High

Too many subsystems


Although the fundamental algorithm for this project is easily understood and developed in a reasonable length of time, there are many supporting systems required to make a fun, playable game out of it.  I have additionally defined a hierarchical, tactical, squad-based AI system to be built on top of the basic architecture.  In the case of certain basic systems such as pathfinding, movement, and some sensors, I will be able to reuse existing Unreal code, but I will essentially be developing a complete gameplay mod single-handedly.  The milestone schedule appears feasible, but in the event that the project becomes clearly overscoped, the definition of the squad AI can be pared down or removed entirely.  The game will still be playable and can demonstrate the benefits of GOAP without this system.


Impact: Medium, I have a clear plan to be able to scale content back while delivering an apparently complete final product

Probability: Medium

Visibility: Medium
Complete loss of project


In the event of a fire, hard drive crash, apocalypse, etc., all my progress would be lost.  I could mitigate this by making regular backups to the Guildhall network, my portable hard drive, my USB thumb drive, and/or my web space.


Impact: High, I would have to rewrite all my code and thesis


Probability: Low


Visibility: Low

